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Genome-wide association studies (GWAS) have identified 
multiple loci associated with plasma lipid concentrations1–5. 
Common variants at these loci together explain <10% 
of variation in each lipid trait4,5. Rare variants with large 
individual effects may also contribute to the heritability of 
lipid traits6,7; however, the extent to which rare variants affect 
lipid phenotypes remains to be determined. Here we show an 
accumulation of rare variants, or a mutation skew, in GWAS-
identified genes in individuals with hypertriglyceridemia 
(HTG). Through GWAS, we identified common variants 
in APOA5, GCKR, LPL and APOB associated with HTG. 
Resequencing of these genes revealed a significant burden of 
154 rare missense or nonsense variants in 438 individuals with 
HTG, compared to 53 variants in 327 controls (P = 6.2 × 10−8), 
corresponding to a carrier frequency of 28.1% of affected 
individuals and 15.3% of controls (P = 2.6 × 10−5). Considering 
rare variants in these genes incrementally increased the 
proportion of genetic variation contributing to HTG.

GWAS have identified novel and known loci associated with 
 population-based plasma lipid concentrations1–5. Despite the 
 robustness of these associations, the proportion of variability 
explained by GWAS-identified loci is relatively modest, <10% in 
most studies4,5. Although vastly expanded study sample sizes con-
tinue to reveal new associations, each newly associated variant has 
an incrementally smaller effect size and contributes only marginally 
to the cumulative variation of each lipid phenotype6. This suggests 
that GWAS of population-based subjects may be reaching the limits 
of their ability to reveal genetic variation underlying complex traits. 
A question that has arisen is whether additional forms of genetic 

variation, such as rare variants with large individual effects, could 
contribute to the heritability of complex traits such as plasma lipid 
concentrations6,7. Although the mechanistic basis for the associa-
tion between lipid traits and most of the common variants discov-
ered in GWAS is still largely unknown, it remains possible that rare 
variants in GWAS-identified genes may contribute significantly to 
lipid phenotypes.

Studying subjects at the extremes of a quantitative phenotype 
 distribution has proven useful in identifying functional rare variants8–12.  
Using missense-accumulation analysis in genes defined a priori as 
likely to contain rare variants, studies can statistically quantify a 
 burden of mutations in subjects with severe phenotypes, before func-
tional assessment of each variant. Primary HTG is one such complex 
polygenic disease, broadly defined by fasting plasma triglyceride 
concentrations above the ninety-fifth percentile13. Resequencing of 
triglyceride-modulating candidate genes has implicated both common 
and rare variants in HTG disease pathophysiology9,14–16; however, 
the majority of phenotypic variation underlying severe HTG remains 
unattributed17. Our objectives were (i) to perform an unbiased GWAS 
of individuals with HTG to identify common variants associated with 
HTG, and (ii) to resequence coding regions of candidate genes in loci 
reaching genome-wide significance to evaluate the burden of rare 
variants in individuals with HTG compared with controls. Here we 
show that loci found to be associated with HTG by GWAS also harbor 
a significant excess of rare variants.

In total, 555 individuals with HTG and 1,319 controls were included 
in two cohorts of the study: the GWAS cohort included 463 affected 
individuals and 1,197 controls, and the sequencing cohort included 
438 affected individuals and 327 controls. Individuals with HTG were 
unrelated subjects diagnosed with Fredrickson hyperlipoproteinemia 
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phenotypes 2B (MIM 144250), 3 (MIM 107741), 4 (MIM 144600) or 
5 (MIM 144650), ascertained primarily from a single tertiary referral 
lipid clinic. The mean plasma triglyceride concentration of indivi-
duals with HTG was 14.3 mmol l−1. We chose controls with maximum 
recorded fasting plasma triglyceride concentrations <2.3 mmol l−1 to 
exclude undiagnosed HTG. All study subjects were of self-declared 
European ancestry; subjects deviating from European ancestry as 
determined by multidimensional scaling using whole-genome SNP 
data were removed from sequencing analysis (Supplementary Fig. 1). 
As expected, clinical characteristics of individuals with HTG were 
less favorable than those of controls, with worse lipid profiles and an 
increased prevalence of type 2 diabetes (Table 1).

The HTG phenotype was tested for association with >2.1 million 
SNPs using an additive multivariate logistic regression model 
(Supplementary Fig. 2). This model appropriately adjusted for sex, 
body-mass index, diabetes status and ten principal components of 
ancestry (Supplementary Fig. 3). Four loci were associated with 
HTG (P < 5 × 10−7): APOA5, GCKR, LPL and APOB (Table 2). 
Most associations with HTG were mediated by the same genomic 
loci associated with fasting plasma triglyceride concentration in 
population-based GWAS5: APOA5 and GCKR were associated at 
the same lead SNP, and LPL was associated with the same haplo-
type block. In contrast, the HTG-associated SNPs in APOB were 
~123 kb upstream of the gene, which would be consistent with 
the involvement of regulatory elements in the overexpression of  
triglyceride-rich lipoproteins in HTG pathophysiology. Investigation 
of subthreshold association signals did not provide any additional 
insight into novel HTG-associated genes.

Next, we tested the hypothesis that common genetic variants in 
remaining known triglyceride-associated loci are similarly associated 
with HTG5. Only three loci were replicated at 
a Bonferroni-corrected significance threshold 
of P < 0.005: MLXIPL, TRIB1 and ANGPTL3 
(Table 2). Positive replication of these 
 triglyceride-associated loci, combined with 
trends toward significance at FADS1-FADS2-
FADS3 (P = 0.05) and NCAN-CILP2-PBX4  
(P = 0.07), suggest that additional triglyceride-
modulating loci may also be involved in HTG 
pathophysiology; however, smaller effect 
sizes probably limit their detection.

We next hypothesized that HTG-associated 
genes would harbor rare variants related to 
HTG disease causation. The protein-coding 
sequences of APOA5, GCKR, LPL and exons 
26 and 29 (67.8%) of APOB were resequenced 
in individual subjects as the regions most 
likely to harbor protein-compromising muta-
tions. Across the four genes, 80 distinct rare 
variants were identified with minor allele 

frequencies <1% in controls (Fig. 1 and Supplementary Table 1).  
A significant accumulation of rare variants was identified in indivi-
duals with HTG (Table 3), including 154 total variants in 438 HTG 
diploid genomes, compared to 53 total variants in 327 control diploid 
genomes (P = 6.2 × 10−8), corresponding to a significantly higher car-
rier frequency of 28.1% in individuals with HTG compared to 15.3% 
in controls (P = 2.6 × 10−5). A more restricted analysis of rare variants 
found exclusively in either individuals with HTG or controls, deliber-
ately removing all reported variants without demonstrated functional 
compromise, similarly revealed a significant burden of 47 variants in 
affected individuals, compared to nine variants in controls (P = 2.4 ×  
10−5); this corresponds to a significantly higher carrier frequency 
of 10.3% in individuals with HTG compared to 2.8% in controls  
(P = 4.4 × 10−5). The fasting plasma triglyceride concentrations of 
carriers with HTG ranged from 3.10 to 88.5 mmol/l, whereas those 
of control carriers ranged from 0.45 to 1.93 mmol/l. No associations 
were discerned between such attributes as the gene, mutation type 
or mutation position and the plasma triglyceride concentration or 
HTG phenotype.

The strength of association between HTG and genomic loci did 
not predict the mutation accumulation observed in the resequenced 
genes. LPL harbored the largest relative proportion of rare variants, 
followed by GCKR, APOB and APOA5; these had, respectively, 30.9, 
10.7, 9.3 and 4.5 rare variants per kilobase of coding sequence in 
individuals with HTG, and 5.6, 2.7, 4.3 and 0.9 rare variants per 
kilobase of coding sequence in controls. The burden of rare vari-
ants found in individuals with HTG is highly suggestive of pheno-
type causation, an idea supported by several truncation mutations,  
in silico predictions of deleterious effects, and bona fide character-
ized deleterious mutations (Supplementary Table 1). The majority 

Table 1 Baseline clinical attributes of the study sample
n Female (%) T2D (%) Age (years) BMI (kg m−2) TC (mmol l−1) HDL-C (mmol l−1) LDL-C (mmol l−1) TG (mmol l−1)

GWAS cohort HTG 463 30.7 25.7 50.9  13.0 29.9  4.9 8.2  3.9 0.9  0.3 – 14.3  19.8
Control 1,197 40.4 0.4 47.8  11.1 26.4  4.6 5.3  1.3 1.4  0.4 3.4  1.2 1.1  0.7

Resequencing cohort HTG 438 33.2 28.1 51.3  13.1 30.0  4.9 8.7  4.3 0.9  0.3 – 14.2  19.0
Control 327 50.5 4.1 49.9  15.1 26.8  4.5 4.9  0.8 1.3  0.4 3.2  0.9 1.2  0.4

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; T2D, type 2 diabetes.  
Both cohorts have in common 346 individuals with HTG and 205 healthy controls. Lipid measurements were conducted after a 12-h fasting period. Values are means  s.d.  
LDL cholesterol is not accurately calculated using the Friedewald equation for affected individuals in whom plasma triglyceride concentration exceeds 4.5 mmol l−1.

Table 2 Genetic loci associated with HTG

Locus SNP Chr. Position
Minor  
allele

HTG  
MAF

Control  
MAF OR (95% CI) P

APOA5 rs964184 11 116.2 G 0.33 0.14 3.28 (2.61–4.14) 5.4 × 10−24

GCKR rs1260326 2 2.8 T 0.52 0.41 1.75 (1.45–2.12) 6.5 × 10−9

LPL rs7016880 8 19.9 C 0.03 0.10 0.32 (0.21–0.49) 2.0 × 10−7

APOB rs4635554 2 21.2 G 0.39 0.31 1.67 (1.38–2.02) 2.0 × 10−7

MLXIPL rs714052 7 72.5 G 0.07 0.13 0.44 (0.31–0.62) 0.000003
TRIB1 rs2954029 8 126.6 T 0.37 0.46 0.71 (0.59–0.86) 0.0004
ANGPTL3 rs10889353 1 62.9 C 0.27 0.32 0.73 (0.59–0.89) 0.002
NCAN rs17216525 19 19.5 T 0.07 0.09 0.71 (0.50–1.00) 0.05
FADS rs174547 11 61.3 C 0.40 0.33 1.20 (0.99–1.44) 0.07
XKR6 rs7819412 8 11.1 G 0.46 0.50 0.87 (0.72–1.05) 0.14
PLTP rs7679 20 44.0 C 0.20 0.19 1.17 (0.94–1.47) 0.16

Chr., chromosome; CI, confidence interval; MAF, minor allele frequency; OR, odds ratio. Association was tested 
 using an additive multivariate logistic regression model, with sex, body-mass index, diabetes status and ten principal 
 components of ancestry entered as covariates. The top four loci surpassed a prespecified threshold for genome-wide  
significance of P < 5 × 10−7. Remaining loci were replicated from GWAS meta-analysis of population-based 
 triglyceride concentrations5.
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of subjects carried only one rare variant; however, subjects with 
multiple rare variants were also significantly over-represented 
among individuals with HTG (6.6% of carriers among affected 
 individuals compared with 0.9% of carriers among controls; P = 3.7 ×  
10−5). Any given rare variant in affected individuals is not neces-
sarily sufficient to cause HTG, but rare variants probably contri-
bute to the biochemical heterogeneity observed among affected 
people. For instance, the APOB R3500W variant causes hyper-
cholesterolemia18, but we found it in an individual with Fredrickson 
hyperlipoproteinemia phenotype 2B, defined by both plasma 
 triglyceride and total cholesterol in excess of the ninety-fifth per-
centile. For this individual, APOB R3500W is more likely contri-
buting to the elevated total cholesterol phenotype, but the mutation 
is a part of his genetic background that led to his ascertainment 
through the lipid clinic. This person exemplifies our working 
hypothesis that both common and rare genetic determinants in 
triglyceride-associated genes together contribute to the phenotypic 
heterogeneity underlying HTG.

Finally, we assessed the contribution of genetic and clinical vari-
ables to the total variation in HTG diagnosis, using the individuals 
included in both the GWAS and resequencing cohorts. A comprehen-
sive logistic regression model including clinical variables and both 
common and rare genetic variants explained 41.6% of total variation 

in HTG diagnosis: clinical variables explained 19.7%, common 
genetic variants in seven HTG-associated loci explained 20.8%, and 
rare genetic variants in four HTG-associated loci explained 1.1%. 
These data suggest that rare variants found in four GWAS-identified 
genes incrementally contribute to the unexplained genetic variation 
contributing to HTG pathophysiology.

In summary, we performed a GWAS and resequencing of HTG-
associated genes and found a significant accumulation of missense 
and nonsense mutations that contribute to the unexplained genetic 
component of HTG. Our results suggest that a complex genetic 
 architecture of both common and rare variants in a spectrum of  
triglyceride-associated genes is responsible for HTG. Future studies  
using high-throughput next-generation sequencing are required to 
determine whether these associations extend to additional HTG-
 associated genes, including MLXIPL, TRIB1 and ANGPTL3, and 
to triglyceride-associated genes identified by epidemiological-scale 
GWAS of population-based samples. It also remains possible that rare 
variants in triglyceride-modulating genes that have not yielded signals 
in GWAS, such as GPIHBP1 or LMF1, will further contribute to HTG 
phenotypes19,20. Functional analyses may more accurately define the 
extent of dysfunction of rare variants identified in individuals with 
HTG and their role in disease causation, and higher-level analyses, 
including studies of gene-gene and gene-environment interactions, 
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will determine the combined impact of multiple genetic variants on 
plasma triglyceride concentration in individuals with HTG. Our study 
shows that an accumulation of rare variants is present in GWAS-
 identified genes and that these contribute to the heritability of com-
plex traits among individuals at the extreme of a lipid phenotype.

URLs. Broad Institute, http://www.broadinstitute.org/; London 
Regional Genomics Center, http://www.lrgc.ca/; PolyPhen,  
http://genetics.bwh.harvard.edu/pph/; SHARCNET, http://www.
sharcnet.ca/.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Subjects. The project was approved by the University of Western Ontario 
Institutional Review Board (protocol 07920E) and by ethics boards at collabo-
rating institutions. All subjects provided informed consent for blood sampling, 
DNA analysis and collection of clinical, biochemical and other demographic 
data. All subjects in this study were unrelated and of self-declared European 
ancestry. The GWAS included 463 individuals with HTG and 1,197 controls. 
Affected individuals were obtained predominantly from a single tertiary referral  
lipid clinic (92% of affected individuals) in London, Ontario, Canada, or 
from a tertiary referral lipid clinic in Amsterdam. Controls were subjects 
with familial hypercholesterolemia (4% of controls) obtained from a single 
tertiary referral lipid clinic in London, Ontario, Canada, or normal healthy 
controls obtained from population-based studies, including the Study of 
Health Assessment and Risk in Ethnic Groups21 (18%) and the Myocardial 
Infarction Genetics Consortium22 (78%). We chose controls with plasma 
triglyceride concentration <2.3 mmol l−1 to exclude potentially undiagnosed 
HTG, but controls were otherwise not phenotypically selected. Subjects 
with familial hypercholesterolemia were included as negative controls only 
in the GWAS. The resequencing cohort included 438 individuals with HTG 
and 327 healthy controls: affected individuals were obtained only from the 
lipid clinic in London, Ontario, Canada, and healthy controls included only 
healthy subjects from the Study of Health Assessment and Risk in Ethnic 
Groups. Biochemical analyses were conducted separately in each cohort, as  
previously described14,21,22.

Genome-wide association study. All subjects were genotyped using 
Affymetrix Genome-Wide Human SNP Array 6.0 according to protocols of 
the London Regional Genomics Centre or the Broad Institute. Imputation was 
conducted using HapMap CEU phased haplotypes in MACH23. All genotypes 
were filtered for minor allele frequency >1%, Hardy Weinberg P > 0.0001, 
and 95% call rate or imputation quality r2 > 0.4. Identity-by-state calcula-
tions, multidimensional scaling and association testing were conducted in 
PLINK24. Genome-wide significance was prespecified as P < 5 × 10−7; nomi-
nal significance for replication of known triglyceride-associated SNPs was a 
Bonferroni-corrected threshold P < 0.005. Covariates entered into all analyses 
included sex, body-mass index, diabetes status and ten principal components 
of ancestry as generated by Eigenstrat25,26.

Sequencing and mutation accumulation. All genes were bidirection-
ally sequenced in individual samples using an ABI 3730 Automated DNA 
Sequencer and called using automated software (Applied Biosystems). Rare 
variants were manually curated, confirmed by repeat analysis and annotated 
in silico for functional effects using PolyPhen. Rare variants were defined as 
having minor allele frequencies <1% in controls. Carriers were defined as 
having at least one rare variant. Rare-variant accumulation was compared 
between individuals with HTG and controls using Fisher’s exact test, with 

nominal significance defined as a two-sided P < 0.05. All subjects in the rese-
quencing cohort were sequenced fully across the translated coding sequences 
of APOA5 (NCBI NG_015894.1 and NP_443200.2), GCKR (NM_001486.3 
and NP_001477.2), LPL (NG_008855.1 and NP_000228.1), and exons 26 
and 29 of APOB (NG_011793.1 and NP_000375.2) (67.8%). Subjects missing 
sequencing data in any one gene were removed before analysis. Our intention 
was to identify rare missense and nonsense variants potentially responsible 
for HTG disease causation; accordingly, we excluded intronic variants, UTR 
variants and synonymous variants from mutation-accumulation analyses. 
Controls were population-based and not phenotypically selected on the basis 
of extremely low plasma triglyceride concentration; thus, they do not repre-
sent a supernormal control group in which protective rare variants would be 
enriched upon resequencing. Exclusive variants were defined as rare variants 
found exclusively in individuals with HTG or in controls (not both), with 
deliberate exclusion of variants previously reported without demonstrated 
functional compromise. Mutation-accumulation analyses compared either the 
number of observed rare alleles with the number of reference alleles, or the 
number of rare-variant carriers with the number of noncarriers, in individuals 
with HTG and controls.

Genetic variation explained. Subjects included in this analysis were common 
to both GWAS and resequencing cohorts. The proportion of genetic variation 
explained was calculated from the residuals of a multivariate logistic regression 
model, using discrete case-control status as the dependent variable, with a pub-
lished SAS version 9.2 macro written for this purpose27. Independent variables 
included the clinical covariates age, sex, body-mass index and diabetes status 
as either continuous or discrete variables, common variants as continuous 
variables of HTG risk–associated alleles at each of the seven HTG-associated 
loci, and rare variants as a continuous variable including the number of rare 
variants carried by each subject.
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